
 III. Evaluation • 53

III. Evaluation

54 • Management Model, Cost Estimation and KPI Improvement

Figure 8: Evaluation of KPIs and root cause analysis

© PASS Consulting Group

Application
specification

Application
architecture

System
architecture

System
operation

Development
architecture

Quality
management

Project
management

Human
resources

management

OPERATIONAL
 MANAGEMENT

STRATEGIC MANAGEMENT

NORMATIVE MANAGEMENT

Application Evaluation Optimization

Market Legal environment Technical innovations Technologies

MEASURING METHODS

This chapter covers the evaluation of previously determined KPIs as well as a root

cause analysis – as a prerequisite for purposeful improvements.

Analyzing the course of productivity over time

A first step in the evaluation of previously determined KPIs is the analysis of their

time course. Usually, any continual deterioration is an indicator of underlying op-

portunities for saving time and costs and for quality improvements in the future.

After the implementation of improvement measures, the development of the KPIs

is an indicator for their effectiveness and sustainability.

 III. Evaluation • 55

Figure 9 shows the graphic representation of development productivity measured

for every release of a sample system after the development process is completed

and the release goes into production. The diagram clearly shows that, initially,

productivity has decreased since the beginning of the year. In April and May a

new major release was developed and went into production as release 2.0 in May,

which included sustainable improvement measures.

It can often be observed that the accuracy of single measurements of the further

development productivity is proportional to the size of the development: The

smaller the functional size is, the more questionable is the measuring accuracy

seems. The reason for this is that, in practice, the complexity implemented requi-

© PASS Consulting Group

0

1

2

3

4

5

6

7

8

9

DecNovOctSeptAugJulyJuneMayAprMarFebJan

Productivity (Size/Effort)

Rel. 1.3

Rel. 1.4

Rel. 1.5

Rel. 2.0

Rel. 2.1

Rel. 2.2

Rel. 2.3

Figure 9: Course of productivity over several months (example)

56 • Management Model, Cost Estimation and KPI Improvement

rements often is very different, as the consideration of complexity by functional

measurement methods is limited. These methods count data elements crossing

the system boundaries as well as related structures in the database. In any case, a

correlation between complexity and development costs is undisputed.

A good example is a small, new release of an application in which only some re-

ports have been implemented. Reports are usually characterized by a large num-

ber of data elements crossing the system boundary and therefore being counted

by functional measurement methods, which results in a large functional size. Let’s

assume that reporting data can be read by simple queries to the database, which

requires little effort for the implementation. Both, the large functional size and the

small development effort, lead to a calculated high productivity.

Another example is the implementation of a complex algorithm without user in-

teraction, which then displays the result as one single value in a dialog field of

the user interface. Because there is only one data element crossing the system

boundary , applying a functional measurement method results in a low value

of the implemented size. However, the implementation effort is high. Both, the

small functional size and the high development effort, lead to a calculated low

productivity.

When calculating the productivity of a small development scope, there is a risk

that the complexity of the few implemented requirements is almost entirely hig-

her or lower compared to the average and, therefore, the calculated productivity

is not accurate – as shown in the examples above. These inaccuracies can be

levelled by calculating the productivity of larger development scopes, where the

requirements’ complexity is evenly distributed. In practice, it has proven itself to

summarize functional size and effort of all new releases of the last months in

order to calculate the average further development productivity of a system:

 III. Evaluation • 57

Productivity improvements or degradations become apparent if they are sustai-

nable and have a perceptible value in relation to the total functional size. A good

example for this is shown in table 2, which lists the fundamental values for the

functional size S
n
 and the effort E

n
 for each new release as shown before in figure

9 in the course of productivity over time.

In this example, the average productivity P is calculated by the sum of the func-

tional size (in data interaction points) and the sum of the effort (in man days)

of all releases developed in a period of four months. The average productivity in

January, when release 1.3 is completed, is therefore calculated as follows:

S
n

(DIP)

E
n

(MD)

P

(DIP/MD)

Rel 1.0 Okt 125 23

Rel 1.1 Nov 23 2

Rel 1.2 Dez 540 123

Rel 1.3 Jan 125 15 5.0

Rel 1.4 Feb 410 149 3.8

Rel 1.5 Mrz 90 77 3.2

Rel 2.0 Mai 1,210 79 5.6

Rel 2.1 Jun 435 115 6.4

Rel 2.2 Jul 140 75 6.6

Rel 2.3 Aug 995 132 6.9

Table 2: Further development productivity by summarizing a period of four months (example)

P =

58 • Management Model, Cost Estimation and KPI Improvement

Average productivity values calculated this way have proven to be resistant

against outliers as can be seen, for example, in release 1.1 which would have a

productivity of 11.5 in case of an individual consideration (results from a functio-

nal size of 23 DIP divided by an effort of 2 MD). Another outlier would be release

2.2 with an isolated measured productivity of 1.9 (results from a functional size

of 140 DIP divided by an effort of 75 MD). Not until multiple individual mea-

surements have been summarized, does the sustainability of the improvement

become apparent, which was in effect since release 2.0. This is not detectable

when looking at the time course of individual measurements only.

The period of 4 months for the summarization of further developments, which has

been used in the example above, is sufficient to illustrate the mentioned effect

of levelling the inaccuracies of smaller development scopes. Depending on the

release cycles, different periods such as a complete year (n = 12) can be useful.

Internal benchmarks

In addition to the informative value of a single system’s course of productivity, the

comparison of different systems or organizational units can be useful, as figure

10 shows.

The basis for the comparability of values measured with different systems is their

independence from technical characteristics and the orientation of the measu-

rement methods towards use cases. This is generally given in case of functional

measurement methods as the Function Point Analysis, the COSMIC method and

P
125 + 23 + 540 + 125

23 + 2 + 123 + 15

= = 5

 III. Evaluation • 59

the Data Interaction Point method. Comparisons of systems or IT shops of the

same organization, also called internal benchmarks in particular, help to identify

the most productive teams or organizational units, also called „the best in class“,

others can learn from. This requires an analysis of their success factors and a check

of the transferability to other teams or shops. If an organization is able to promote

an internal improvement competition based on transparency and openness for

their valid measurements and without assigning blame or punishments, this will

result in high planning and scheduling reliability perceivable by the market, as

well as in additional cost reduction effects.

© PASS Consulting Group

0

1

2

3

4

5

6

7

8

9

DecNovOctSeptAugJulyJuneMayAprMarFebJan

Productivity (Size/Effort)

Callisto (4,7)

Thebe (3,3)

Ganymede (6,9)

Figure 10: Internal productivity benchmark (example)

